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Abstract: Transcriptome–wide association studies (TWAS) have identified several genes that are associ-
ated with qualitative traits. In this work, we performed TWAS using quantitative traits and predicted
gene expressions in six brain subcortical structures in 286 mild cognitive impairment (MCI) samples from
the Alzheimer’s Disease Neuroimaging Initiative (ADNI) cohort. The six brain subcortical structures
were in the limbic region, basal ganglia region, and cerebellum region. We identified 9, 15, and 6 genes
that were stably correlated longitudinally with quantitative traits in these three regions, of which 3,
8, and 6 genes have not been reported in previous Alzheimer’s disease (AD) or MCI studies. These
genes are potential drug targets for the treatment of early–stage AD. Single–Nucleotide Polymorphism
(SNP) analysis results indicated that cis–expression Quantitative Trait Loci (cis–eQTL) SNPs with gene
expression predictive abilities may affect the expression of their corresponding genes by specific binding
to transcription factors or by modulating promoter and enhancer activities. Further, baseline structure
volumes and cis–eQTL SNPs from correlated genes in each region were used to predict the conversion
risk of MCI patients. Our results showed that limbic volumes and cis–eQTL SNPs of correlated genes in
the limbic region have effective predictive abilities.

Keywords: subcortical structure; quantitative trait; longitudinal stably correlated; mild cognitive
impairment; conversion

1. Introduction

Alzheimer’s disease (AD) is a progressive and irreversible neurodegenerative disorder,
accounting for more than 75% of all dementia events worldwide [1]. Approximately 35%
of individuals over 80 years of age suffer from AD around the world [2]. Mild Cogni-
tive Impairment (MCI) is the preclinical stage of AD and is clinically heterogeneous [3].
Genome–wide association studies (GWAS) have identified several susceptible single nu-
cleotide polymorphisms (SNPs) for AD [4–7] and MCI [7]. However, GWAS can be used to
understand which SNPs are associated with traits but cannot explain how the SNPs affect
the traits. SNPs are likely to influence traits by regulating gene expression [8,9]. On the
other hand, gene expression may be regulated by causal SNPs but not by the SNP with the
lowest p-value within a linkage disequilibrium block.

Transcriptome sequencing can be used to study associations between whole transcrip-
tion levels and traits in a specific tissue. Howevr, sampling for transcriptome sequencing is
costly and difficult. Gusev et al. [10] proposed a new strategy, leveraging expression pre-
diction to perform a transcriptome–wide association study (TWAS) to identify significant
trait–expression associations. TWAS first fits tissue–specific models using reference data
with both SNP genotype data and gene expression data available. Then, these models are
used to predict gene expression in a new dataset with genotype data available. Finally, the
predicted gene expression in each tissue is associated with corresponding traits. TWAS has
been proved as an effective method to identify gene associations between gene expression
and traits in specific tissues [11].
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Several TWAS studies have identified multiple novel susceptibility genes for AD
by combining Genotype–Tissue Expression Project (GTEx) gene expression models and
genotype data of AD. Raj et al. [12] identified 21 genes with significant associations with
AD in two cohorts, 8 of which were were novel. Hao et al. [13] combined TWAS and data
from the International Genomics of Alzheimer’s Project (IGAP) cohort and identified 29
potential disease–causing genes, 21 of which were new. Jung et al. [14] combined tissue
specifically predicted gene expression levels and polygenic risk score from 207 AD cases
and 239 cognitively normal controls and found that the inclusion of polygenic risk score
and gene expression features provided better performance in AD classification. Gerring
et al. [15] performed a multi–tissue TWAS of AD and observed associated genes in brain
and skin tissue.

The aim of our study was to identify genes potentially related with specific brain
structure quantitative traits in MCI samples, reveal possible relationships with biologi-
cal mechanisms, and use them for conversion analyses. We performed TWAS between
predicted gene expression and longitudinal quantitative traits in six brain subcortical
structures to identify longitudinally stable correlated genes for MCI. First, gene expression
prediction models provided by GTEx [16] were used to predict gene expression in amyg-
dala, hippocampus, accumbens area, caudate, putamen, and cerebellum using 286 MCI
samples from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) cohort. Second, the
expression of genes in the above six structures was correlated with baseline and 12–month
follow–up quantitative traits in the corresponding structures. Overlapping genes in base-
line and 12–month follow–up were considered as longitudinally stable correlated genes in
each structure. Third, fine–mapping analyses were performed on these longitudinally sta-
ble correlated genes and corresponding cis–eQTL SNPs to identify the potential regulation
mechanisms. Finally, we further investigated the potentials of baseline quantitative traits
and gene expression–determined cis–eQTL SNPs of longitudinally stable correlated genes
for conversion analysis of MCI samples.

2. Materials and Methods

Data used in the preparation of this article were obtained from the ADNI database
(adni.loni.usc.edu). ADNI was launched in 2003 as a public–private partnership, led by the
Principal Investigator Michael W. Weiner, MD. The primary goal of ADNI is to test whether
findings from serial magnetic resonance imaging (MRI), positron emission tomography
(PET), other biological markers, and clinical and neuropsychological assessment can be
combined to measure the progression of MCI and early AD.

2.1. Ethics Statement

We used the ADNI subject data collected from 50 clinic sites. The ADNI study was
conducted according to Good Clinical Practice guidelines, US 21CFR Part 50—Protection
of Human Subjects, and Part 56—Institutional Review Boards (IRBs)/Research Ethics
Boards (REBs)—and pursuant to state and federal HIPAA regulations. Written informed
consent was obtained from all participants after they had received a complete description
before protocol–specific procedures were carried out based on the 1975 Declaration of
Helsinki. IRBs were constituted according to applicable State and Federal requirements
for each participating location. The protocols were submitted to appropriate Boards, and
their written unconditional approval obtained and submitted to Regulatory Affairs at the
Alzheimer’s disease Neuroimaging Initiative Coordinating Center (ADNICC) prior to
commencement of the study. We have obtained permission to use data from ADNI, and
the approval date is 25 November 2019.

2.2. Samples

A total of 819 samples of European ancestry were recruited by the ADNI cohort, and 757
of them were run on the Human610–Quad BeadChip (Illumina Inc., San Diego, CA, USA)
for genotyping. Among these 757 samples, 286 MCI samples were MPRAGE N3–Scaled
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sMRI data available at both baseline and 12–month follow–up. MRI images marked with
“N3” and “scaled” in the file name were downloaded from the ADNI dataset; these files
underwent B1 bias field correction and N3 intensity nonuniformity correction [17]. The
following information was also collected from the the ADNI dataset for 286 selected samples:
gender, age, education years, Clinical Dementia Rating Sum of Boxes (CDR–SB) score, Mini–
Mental State Examination (MMSE) score, Functional Assessment Questionnaire (FAQ) and
Alzheimer Disease Assessment Scale scores (ADAS, version 11, 13 and Q4).

2.3. Genotype and Image Data Pre–Processing

PLINK 1.9 software [18] (Boston, MA, USA) was used for quality control of genotype
data for 286 MCI samples. SNPs with a call rate smaller than 90%, Minor Allele Frequency
(MAF) smaller than 10%, or deviations from the Hardy–Weinberg Equilibrium (5 × 10−7) were
removed from the original genotype data. After quality control, imputation was performed
using impute2 software [19]. After quality control and imputation, 28,571,732 SNPs were
retained from the 286 MCI samples.

Freesurfer 6.0 software (Boston, MA, USA) was applied for automated segmentation
and volume measurement of subcortical structures and total intracranial volume (ICV) for
all selected MCI samples from MRI image data at baseline and 12–month follow–up. Left
and right volumes from the same structure were summed. Adjustments were performed
for subcortical structure volumes using gender, age, and ICV, using the following formulas:

QT = a ∗ AGE + b ∗ GENDER + c ∗ ICV + d (1)

QTadj = a ∗ AGEmean + b ∗ GENDERmean + c ∗ ICVmean + d + r (2)

QT and QTadj represent raw quantitative trait volumes extracted using Freesurfer and
adjusted quantitative trait volumes of a subcortical structure across the 286 MCI samples.
AGE, GENDER, and ICV represent age, gender, and ICV of all MCI samples, while AGEmean,
GENDERmean, and ICVmean represent mean age, mean gender, and mean ICV across all
MCI samples; d represents error, while r represents residual. We first calculated coefficients
of age (a), gender (b), and ICV (c) from a mixed linear regression model (Equation (1)).
Then, adjusted volumes were calculated using Equation (2). Adjusted volumes of each
subcortical structure were used as quantitative traits.

2.4. Correspondences among GTEx Models, Anatomical Regions, and Freesurfer–Defined Structures

We defined correspondences the GTEx models, anatomical regions, and freesurfer–
defined structures. The PredictDB Data Repository provides 49 gene–predicted models
based on GTEx data (www.gtexportal.org, accessed on 5 September 2020), of which 13 are
brain–related gene expression predictive models. Freesurfer software provides 35 brain
subcortical structures according to the Desikan–Killiany (DK) atlas template. In our study,
6 one–to–one corresponding gene expression predictive model–subcortical structure pairs
were selected and assigned to three regions (Table 1).

Table 1. Corresponence of GTEx models, anatomical regions, and subcortical structures.

GTEx Model Region Subcortical Structures

Brain Amygdala Limbic Amygdala
Brain Hippocampus Hippocampus

Brain Caudate basal ganglia Basal Ganglia Caudate
Brain Putamen basal ganglia Putamen

Brain Nucleus accumbens basal ganglia Accumbens area

Brain Cerebellum Cerebellum Cerebellum cortex
GTEx models were downloaded from http://predictdb.org/ (accessed on 5 September 2020); Subcortical struc-
tures were segmented by Freesurfer software according to the Desikan–Killiany (DK) atlas template.

www.gtexportal.org
http://predictdb.org/
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2.5. Correlation between Predictive Gene Expression and Quantitative Traits

We utilized the PrediXcan software to predict gene expression based on the genotype
data of all MCI samples. PrediXcan establishes a linear prediction model of gene expression
in a dataset with both SNP genotype data and gene expression available (GTEx version 8)
using a multivariate adaptive shrinkage regression (mashr) approach. Brain–specific
gene expressions in 6 structures were predicted by combined prediction models and MCI
genotype data. Brain–specific gene expression was determined by corresponding cis–eQTL
SNPs from the LD reference files for the corresponding model in PredictDB Data Repository
(http://predictdb.org/) (accessed on 5 September 2020).

We annotated the chromosomal locations of cis–eQTL SNPs in the corresponding
genes using SNPnexus database [20] (accessed on 15 May 2021). Regulatory information for
cis–eQTL SNPs were annotated using HaploReg database [21] (accessed on 15 May 2021)
and RegulomeDB database [22] (accessed on 15 May 2021). HaploReg is a web–based
tool for annotating SNPs, including chromosome number, protein binding, motif change.
RegulomeDB can be used to predict whether an SNP affects transcription factor binding and
gene expression. RegulomeDB provides a rank score of SNP, with a low score representing
strong evidence of regulatory function. We used VARAdb database [23] to annotate
the location of cis–eQTL SNPs in promoter or enhancer regions of corresponding genes
(accessed on 15 May 2021). VARAdb determines promoters based on the basic gene
annotation file release 33 from GENCODE (2 kb upstream of transcription start site) and
determines super enhancers from 542 H3K27ac ChIP–seq samples from the human super–
enhancer database [24].

Pearson correlation coefficients were used to calculate correlations between predicted
gene expression and adjusted subcortical structure volumes in Table 1. The correlation
matrix heatmaps were constructed using the pheatmap package (version 1.0.12) in R.

2.6. Conversion Analysis Based on Quantitative Traits and SNPs

The performances of quantitative traits and cis–eQTL SNPs were further evaluated
in terms of their ability to determine the “time to progression” from MCI to AD via
Kaplan–Meier analysis. For this evaluation of MCI samples in the ADNI dataset, the
midpoint between the first follow–up with an AD diagnosis and the last follow–up without
an AD diagnosis was considered as the conversion time point for MCI samples. The
longest follow–up time was collected for samples who did not convert to AD, and these
samples were regarded as non–conversion MCI samples [25]. First, quantitative trait
volumes or genotypes of cis–eQTL SNPs were used as feature vectors to represent MCI
samples and to calculate distances across all MCI samples through Euclidean distance.
Hierarchical clustering was completed using stats package in R to cluster MCI samples
into two subgroups. Then, we applied the “survfit” function in the survival package
(version 3.2–7) in R and plotted Kaplan–Meier curves for the two subgroups. The median
conversion time of MCI samples in the two subgroups was calculated; the group with a
high medium time was regarded as a low–risk group, while the group with a low medium
time was regarded as a high–risk group. A log rank test with a p-value less than 0.05 was
considered statistically significant for median conversion time between risk groups [26].

3. Results
3.1. Sample Characteristics

The baseline characteristics of 286 MCI samples and their association with AD are
shown in Table 2. The samples were obtained from patients with a mean (SD) age of
74.85 (6.97) years; 33.9% were female, 18.5% had less than 12 years of education. In ac-
cordance with their MCI diagnosis, the average scores of most neuropsychological tests were
in the normal–to–low range. A total of 167 (58.4%) study participants converted to probable
AD over a mean (SD) follow–up period of 25.05 (21.76) months. Of the 119 who did not
convert, 45 had less than 36 months of follow–up data, whereas 71 were followed for more
than 36 months. Three samples had only one follow–up visit.

http://predictdb.org/
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Table 2. Baseline characteristics of 286 MCI samples.

Characteristic Number (%) or Mean ± SD

Demographic
Age, years 74.85 ± 6.97

Gender, female 97 (33.9)
Education, ≤12 years 53 (18.5)

Neuropsychological measures
CDRSB 1.53 ± 0.85
MMSE 27.04 ± 1.78
FAQ 3.89 ± 4.49

ADAS11 11.66 ± 4.40
ASAS13 4.40 ± 6.38

ADASQ4 18.91 ± 2.23
Conversion MCI 167 (58.4)

Conversion period 25.05 ± 21.76
Non–conversion MCI 119 (41.6)

With <3 years of follow–up data 45 (37.8)
With ≥3 years of follow–up data 71 (59.7)

With only 1 follow–up visit 3 (0.03)
MCI, Mild Cognitive Impairment; CDRSB, Clinical Dementia Rating Sum of Boxes; MMSE, Mini–Mental State
Examination; FAQ, Functional Assessment Questionnaire; ADAS, Alzheimer Disease Assessment Scale scores.

3.2. Identification of Quantitative Traits–Related Genes

PrediXcan software was applied to predict gene expression by integrating GTEx gene
expression prediction models and ADNI genotype data. Correlations between quantitative
traits and predicted gene expressions were computed by Pearson correlation across all
selected samples at baseline and 12–month follow–up. The correlation heatmaps for all six
structures at baseline and 12–month follow–up are shown in Figure 1. Gene–quantitative
traits pairs with a correlation coefficient greater than 0.2 and lower than −0.2 are displayed
in the heatmaps. Genes associated with quantitative traits were distinct across all structures
at baseline (Figure 1A) and 12–month follow–up (Figure 1B).

We evaluated the overlapping correlated genes at baseline and 12–month follow–
up. Table 3 shows overlapping genes associated with structure volumes at baseline and
after 12 months across all MCI samples. In the limbic region, 10 and 8 amygdala–specific
expressed genes were correlated with baseline and 12–month amygdala volume, while 9
and 10 hippocampal–specific expressed genes were correlated with baseline and 12–month
hippocampal volume. Four amygdala–specific expressed genes were overlapping between
baseline and 12–month follow–up, while five hippocampal–specific expressed genes were
overlapping between baseline and 12–month follow–up. In addition, we identified 15
overlapping genes with basal ganglia structures, including accumbens area, caudate and
putamen, and 9 overlapping genes with the cerebellum. We considered these overlapping
genes as stably correlated longitudinally with the corresponding quantitative traits. We
used GeneCards database to annotate these genes, to define whether they were related to
AD or MCI. We found that six, seven, and three genes were related to AD or MCI, while
three (NOXRED1, MYL6B, and FAM162B), eight (RELCH, IRX3, RELL1, TMEM50A, SETD4,
TMEM253, HPS3, SLC26A10), and six (SLC6A16, SLC10A5, ENSG00000272542, LINC00958,
FCGRT, TRPM4) genes were potentially correlated to AD or MCI in limbic region, basal
ganglia region, and cerebellum region, respectively. We summarized the potential biologic
mechanisms of all these longitudinally stable correlated genes (Table S1). Genes in the
limbic region are involved in energy metabolism, regulation of cell growth, apoptosis,
migration and invasion, and synaptic plasticity. Genes in the basal ganglia region are
involved in the inflammatory response and signal transduction. Genes in the cerebellum
region are involved in signal transduction, material transport, lipid metabolism, neuronal
migration, and neuritic plaques.
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Figure 1. Heatmaps of correlations between predicted gene expressions and quantitative traits at baseline (A) and 12–month
follow−up (B). Correlations with coefficient r greater than 0.2 and less than −0.2 are displayed in the heatmaps. The red
color represents positive correlations, while the blue color indicates negative correlations in heatmaps. Column annotations
represent brain structures for correlation analyses. For annotations, limbic region, basal ganglia region, and cerebellum
region are displayed in green, sky blue, and orange, respectively.

3.3. Fine-Mapping Analyses of Gene Expression-Determined Cis-eQTL SNPs

We annotated the 56 gene expression–determined cis–eQTL SNPs of all longitudinally
stable correlated genes (Table 3) using SNPnexus, HaploReg, RegulomeDB, and VARAdb
databases. In this study, 12, 26, and 18 SNPs were found in to 9, 15, and 9 longitudinally
stable correlated genes in the limbic region, basal ganglia region, and cerebellum region,
respectively. We annotated the locations of these SNPs in the corresponding genes using
SNPnexus (Table S2). Among these 56 cis–eQTL SNPs, 54 SNPs (54/56, 96.4%) were
in the intronic or untranslated regions of the various transcript isoforms of the genes.
According to the annotation from the HaploReg database (Table S3), a total of 49 SNPs
(49/56, 87.5%) can affect the corresponding genes through motifs changes, while 25 can
affect the corresponding genes through proteins binding (25/56, 44.6%). According to
the annotation from RegulomeDB (Table S3), 41 SNPs (41/56, 73.2%) had RegulomeDB
rank scores smaller than 4, indicating transcription factor binding and location within a
region of DNase hypersensitivity. We used the VARAdb database to annotate whether
these cis–eQTL SNPs were located in promoters or enhancers of the corresponding genes.
We found that 32 SNPs (32/56, 57.1%) were in the promoters of their corresponding
genes (Table S4), while 22 SNPs were located in the forward strand, and 10 in the reverse
strand. In addition, 25 SNPs (25/56, 44.6%) were enriched in super enhancers, with the
corresponding genes being the closest genes (distance between the gene and the SNP was
less than 1000 kb), while 13 SNPs (13/56, 23.2%) were enriched in super enhancers with
the corresponding genes being the proximal genes (distance between the gene and the SNP
was less than 50 kb) (Table S5). We inferred that cis–eQTL SNPs regulate the expression of
the corresponding genes by affecting promoters or enhancers.
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Table 3. Overlapping quantitative traits-correlated gene sets between baseline and 12-month follow-up in six subcortical
structures.

Structures N n Overlap Genes SNPs Ranks Annotations

Limbic Region
Amygdala 10/8 4 NDUFAF3 (−) rs7100 1/1 MCI

NOXRED1 (−) rs141260780 a, rs11846861 a 2/3 -
AHSA1 (−) rs11845345 a 5/4 AD/MCI
MYL6B (+) rs3809134 ab 9/2 -

Hippocampus 9/10 5 VAPA (−) rs4798889 ab 1/5 AD/MCI
ME3 (−) rs670736 ab 2/1 MCI
AGK (−) rs7790742 a, rs7795885 a 3/9 AD/MCI

FAM162B (+) rs9387433, rs641338 a 6/7 -
EPHA4 (+) rs149636195 ab 8/3 AD/MCI

Basal ganglia
Region

Accumbens
Area 14/11 2 PTH1R (−) rs2168442 ab, rs144645644 b 1/7 AD/MCI

IPO7 (+) rs75955853 ab, rs12363308 b 3/1 AD

Caudate 12/17 10 GTPBP8 (−) rs114429530 ab 1/1 AD
RELCH (−) rs3752091 a, rs9958695 2/8 -

IRX3 (+) rs191251428 ab 4/3 -
CLCNKB (+) rs75909377 ab 5/5 MCI

IL23A (+) rs79824801 ab 6/10 AD/MCI
RELL1 (+) rs3832308, rs4832933 ab 7/7 -

TMEM50A (−) rs3093586 b, rs3091243 b, rs8876 b 8/4 -
SETD4 (−) rs2835263, rs142847892 a 9/11 -
ULBP3 (+) rs1537648 a 10/16 AD

TMEM253 (−) rs10872886 11/14 -

Putamen 7/10 3 ERCC4 (+) rs6498486 a, rs3136042 a, rs1799798 a 1/1 AD/MCI
HPS3 (+) rs13089410 a, rs7643410 a 3/4 -

SLC26A10 (−) rs10747780, rs10437954 5/5 -

Cerebellum
Region

Cerebellum
Cortex 12/15 9 SLC6A16 (−) rs8102658 a 1/1 -

SLC10A5 (−) rs2955002, rs58379275, rs75348453 2/2 -
ACAT2 (−) rs2025187 ab 3/5 AD/MCI
ZFYVE9 (+) rs627011 ab 4/4 MCI

ENSG00000272542
(+) rs1886087, rs9518861, rs9554903 5/3 -

ERBB2 (+) rs2517955 ab, rs75849983 ab 7/6 AD/MCI
LINC00958 (−) rs111880988, rs4756736 8/15 -

FCGRT (+) rs2946865 ab, rs1132990 b 9/13 -
TRPM4 (+) rs11882563 ab, rs11083963 b, rs73048855 12/9 -

N, number of correlated genes at baseline and 12-month follow-up; n, number of overlapping genes between baseline and 12-month
follow-up (positive/negative correlation); Overlapping genes, overlapping genes between baseline and 12-month follow-up; SNPs, gene
expression-determined cis-eQTL SNPs; Ranks, ranks of overlapping genes at baseline and 12-month follow-up; Annotations, annotations
were performed using https://www.genecards.org/ (accessed on 20 March 2021). The lists of cis-eQTL SNPs of the corresponding genes
were download from the LD reference file in PredictDB Data Repository (http://predictdb.org/) (accessed on 5 September 2020); SNPs
with superscripts “a” and “b” indicate that these SNPs are in the promoters and enhancers of the corresponding genes, respectively.

To evaluate whether these 56 SNPs were associated with the volume of the correspond-
ing subcortical structures, we performed quantitative traits–based GWAS analysis using
SNPs directly, instead of using predicted gene expression (Figure 2). Among five cis–eQTL
SNPs for longitudinally stable correlated genes in the amygdala, four SNPs (80.0%) were
significantly associated only with amygdala volume at baseline and 12–month follow–up.
Among seven cis–eQTL SNPs (71.4%) for longitudinally stable correlated genes in the

https://www.genecards.org/
http://predictdb.org/
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hippocampus, five SNPs were significantly associated only with hippocampus volume at
baseline and 12–month follow–up. In the basal ganglia region and cerebellum region, 58.3%
and 71.4% of SNPs were significantly associated only with corresponding quantitative traits
(Figures S1 and S2). The results indicated that the correlations between quantitative traits
and predicted gene expression were reasonable. On the basis of our results, we speculated
that these cis–eQTL SNPs can affect both promoters and enhancers, as well as the binding
of transcription factors, which may alter the expression of their target genes.
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expression-determined SNPs in the amygdala. (B) Seven SNPs gene expression-determined SNPs in the hippocampus. The
X-axis reports six subcortical structures (amygdala, hippocampus, accumbens area, caudate, putamen, and cerebellum
cortex) at baseline and 12-month follow-up. The Y-axis presents the p-value (−log10) of the association based on quantitative-
trait GWAS. The blue horizontal line represents −log10 (0.05), while the red horizontal line represents −log10 (5 × 10−4).

3.4. Conversion Analysis Based on Quantitative Traits and SNPs

We used the baseline volumes of limbic region, basal ganglia region, and cerebellum
region as quantitative traits and gene expression–determined cis–eQTL SNPs of longitu-
dinal stably correlated genes in each region to perform a conversion analysis for the MCI
samples. First, the MCI samples were clustered into two subgroups using quantitative traits
or SNPs. Hierarchical clustering was applied based on the Euclidean distance in the stats R
package (v4.0.4). Then, we compared the conversion times and performed Kaplan–Meier
analyses between the two MCI subgroups. Figure 3 shows the Kaplan–Meier plots for the
two groups using quantitative traits and SNPs. The volumes of the structures in the limbic
region and cis–eQTL SNPs of longitudinally stable correlated genes in the limbic region
showed effective predictive abilities (Figure 3A,B), while this was not true for basal ganglia
and cerebellum (Figure 3C–F).

We calculated the percent of conversion and non–conversion of MCI samples in risk
groups defined by quantitative traits and SNPs in the limbic region. Chi–square tests were
used to determine between–group differences in the conversion and non–conversion of MCI
samples. As shown in Figure 4, when using quantitative traits and SNPs, the high–risk
groups and low–risk groups had significantly different proportions of conversion and non–
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conversion, with the high–risk groups showing significantly higher percentages of conversion
than the low–risk groups (quantitative traits, 66.7% vs. 38.2%; SNPs: 64.9% vs. 44.4%).

Biomedicines 2021, 9, x  10 of 15 
 

 
Figure 3. Survival curves of the two mild cognitive impairment (MCI) subgroups based on baseline 
volumes and cis-eQTL SNPs of limbic region (A,B), basal ganglia (C,D), cerebellum (E,F). Confi-
dence intervals are indicated by shaded regions. The blue line represents the low-risk group, while 
the yellow line represents the-high risk group. Median means the median time (months) of conver-
sion of MCI samples in the two subgroups. 

 
Figure 4. Percent of conversion mild cognitive impairment (MCI) (cMCI) and non-conversion MCI 
(ncMCI) samples in the high-risk group and low-risk group using quantitative traits (A) and SNPs 
derived from longitudinally stable correlated genes (B) in the limbic region. P, p-value of the chi-
square test. 

Figure 3. Survival curves of the two mild cognitive impairment (MCI) subgroups based on baseline
volumes and cis-eQTL SNPs of limbic region (A,B), basal ganglia (C,D), cerebellum (E,F). Confidence
intervals are indicated by shaded regions. The blue line represents the low-risk group, while the
yellow line represents the-high risk group. Median means the median time (months) of conversion of
MCI samples in the two subgroups.



Biomedicines 2021, 9, 658 10 of 14

Biomedicines 2021, 9, x  10 of 15 
 

 
Figure 3. Survival curves of the two mild cognitive impairment (MCI) subgroups based on baseline 
volumes and cis-eQTL SNPs of limbic region (A,B), basal ganglia (C,D), cerebellum (E,F). Confi-
dence intervals are indicated by shaded regions. The blue line represents the low-risk group, while 
the yellow line represents the-high risk group. Median means the median time (months) of conver-
sion of MCI samples in the two subgroups. 

 
Figure 4. Percent of conversion mild cognitive impairment (MCI) (cMCI) and non-conversion MCI 
(ncMCI) samples in the high-risk group and low-risk group using quantitative traits (A) and SNPs 
derived from longitudinally stable correlated genes (B) in the limbic region. P, p-value of the chi-
square test. 

Figure 4. Percent of conversion mild cognitive impairment (MCI) (cMCI) and non-conversion MCI (ncMCI) samples in the
high-risk group and low-risk group using quantitative traits (A) and SNPs derived from longitudinally stable correlated
genes (B) in the limbic region. P, p-value of the chi-square test.

4. Discussion

In this study, we performed transcriptome–wide association analyses between gene
expressions and longitudinal quantitative traits in specific brain subcortical structures
to identify longitudinally stable correlated genes for MCI. Combining gene expression
prediction models generated from GTEx data and quantitative traits extracted from T1–
MRI data, we identified 9, 15, and 6 genes correlated with limbic region, basal ganglia
region, and cerebellum region, of which 3, 8, and 6, respectively, have not been reported in
previous studies. We also performed quantitative traits–based GWAS analysis using SNPs.
Most SNPs derived from previously correlated genes were directly associated with the
corresponding quantitative traits, indicating that those correlations between quantitative
traits and predicted gene expressions were reasonable. Furthermore, quantitative traits and
gene expression–determined cis–eQTL SNPs of longitudinally stable correlated genes were
used for conversion analysis of the MCI samples. We found that limbic region structure
volumes and cis–eQTL SNPs derived from longitudinally stable correlated genes in the
limbic region showed effective conversion predictive ability.

Several studies performed transcriptome–wide association analyses using qualitative
traits in Alzheimer’s disease. To our knowledge, this is the first research using quantitative
traits in transcriptome–wide association analyses. We found that genes associated with
quantitative traits of different brain structures were specific. In the limbic region, we found
nine longitudinally stable correlated genes, including four for amygdala volume and five
for hippocampus volume. Within these nine genes, six genes have been reported to be as-
sociated with AD or MCI based on GeneCards. For example, we found that the expression
of EPHA4 was positively correlated with hippocampus volume in baseline and 12–month
follow–up. Gene expression of EPHA4 was predicted by rs149636195 in a hippocampal
predictive model. Rs149636195 is located in the 5’–untranslated region of EPHA4 and
regulates EPHA4 expression by modulating promoter activity and enhancer activity in the
hippocampus [21]. A low level of EphA4 is likely to lead to synaptic dysfunction in early
AD [27], EphA4 is responsible for amyloid β–protein production regulation, and EPHA4
mRNA levels were significantly reduced in AD brains [28]. We speculate that rs149636195 is
an eQTL of EPHA4, and the low expression of EPHA4 results in a decrease in hippocampal
volume, which may cause synaptic dysfunction in MCI. Additionally, we identified three
genes in the limbic region which have not been reported in previous AD/MCI studies,
including NOXRED1, MYL6B, and FAM162B. NOXRED1 (NADP–Dependent Oxidore-
ductase Domain–Containing 1 protein) is a key gene in oxidoreductase activity (Gene
Ontology: 0016491). Oxidative stress may play a role in neuron degeneration and, thus,
in AD. We suspect that NOXRED1 may influence the pathogenesis of AD/MCI through
oxidative stress. MYL6B encodes myosin light–chain 6B protein and is a key component of
myosin. MYL6B contributes to memory consolidation in the amygdala [29,30]. Myosin is
essential for synapse remodeling [31]. We suspect that dysregulation of MYL6B may affect
the integrity and function of myosin, leading to the impairment of synaptic function in the
pathogenesis of early–stage AD. FAM162B (Family with Sequence Similarity 162 Member
B) is a key gene in the membrane (Gene Ontology: 0016020) and an integral component of
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the membrane (Gene Ontology: 0016021). FAM162B plays an important role in endothelial
cells in the blood–brain barrier (Lifemap discovery database). We propose that FAM162B
is important to the maintenance of the blood–brain barrier, which is required for proper
synaptic and neuronal functioning. Dysregulation of FAM162B may cause a breakdown of
the blood–brain barrier, leading to increased susceptibility to AD [32].

We investigated the potential regulation patterns of gene expression–determined cis–
eQTL SNPs affecting the expression of the corresponding genes. Due to the fact that gene
expression prediction models are based on fine–mapped variants that may occasionally
be absent in a typical GWAS and frequently absent in older GWAS [11], we explored
the annotations of SNPs for longitudinally stable correlated genes using four databases,
including SNPnexus, HaploReg, RegulomeDB, and VARAdb. First, these cis–eQTL SNPs
appeared to be related to specific transcription factor binding sites. Transcription factors
increase or decrease the transcription levels of genes by binding to super enhancers or
promoters in specific DNA regions [33]. Second, we found more that than 57% and more
than 44% cis–eQTL SNPs are in the promoters and enhancers of the corresponding genes,
respectively. Promoters and enhancers are responsible for the initiation and reinforcement
of transcription, respectively. SNPs within enhancers can alter transcription factor binding
and alter enhancer–promoter interactions, leading to dysregulation of gene expression and
diseases [34], such as AD [35,36]. Based on the above observations, we inferred that gene
expression–determined cis–eQTL SNPs can affect the expression of corresponding genes by
altering the binding ability of some transcription factors and/or by affecting promoter and
enhancer activities. We also verified the possibility of SNPs affecting corresponding gene
expression. We performed association analyses using these SNPs and all quantitative traits
directly. We found that most SNPs in correlated genes were also correlated to corresponding
quantitative traits, indicating that the correlations between quantitative traits and gene
expressions were reasonable. SNPs appeared to be associated with quantitative traits by
regulating the expression of their corresponding genes.

The identified longitudinally stable correlated genes could be drug candidates for
AD or MCI. EPHA4 encodes a tyrosine protein kinase receptor, and several studies have
discussed the therapeutic potential to target EphA4 for AD [37,38]. AHSA1 encodes an
activator of heat shock protein 90 (Hsp90) ATPase. Small–molecule inhibitors of Hsp90
have been successful at ameliorating amyloid beta–protein and tau protein burden in
AD [39]. MYL6B and VAPA have been reported to be related to synapse formation and
remodeling [40,41]. The breakdown of synaptic connections can lead to a loss of cognitive
ability, and synaptic repair is a disease–modifying strategy for neurodegenerative diseases,
such as AD [42]. Mitochondrial dysfunction and oxidative stress are important pathogenetic
mechanism of AD [43]. Antioxidants are often used in the clinical treatment of central
nervous system diseases, such as AD. Antioxidants could improve mitochondrial energy
metabolism, eliminate free radicals, reduce the damage of oxidative stress to the nervous
system [44]. Targeted antioxidant drugs for the treatment of AD have been developed,
such as idebenone [45]. We identified four genes related to mitochondrial dysfunction
and oxidative stress in the limbic region, including NDUFAF3, NOXRED1, ME3, and AGK,
and these genes may be used as drug targets in early–stage AD. Meanwhile, genes in the
basal ganglia region and cerebellum region are related to the inflammatory response, signal
transduction, and material transport, and could also be new targets for drug development.

We investigated and compared the potential of baseline quantitative traits and cis–eQTL
of longitudinally stable correlated genes in each region in predicting conversion of MCI
samples. Structure volumes in the limbic region, basal ganglia region, cerebellum region and
corresponding cis–eQTL SNPs in each region were used for conversion analyses. Limbic
region structure volumes and 12 SNPs in from longitudinally stable correlated genes in the
limbic region showed effective predictive abilities. Our results support previous MRI studies
of limbic region volumes in MCI progress prediction and found that SNPs obtained by gene–
quantitative trait association also showed conversion prediction value [46–48]. We developed
an SNP panel with 12 SNPs that can be used for conversion prediction for MCI patients. Based
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on conversion analyses using quantitative traits and SNPs, we estimated that about 65% of
MCI patients in the high–risk group will convert to AD within the established follow–up in
ADNI, compared with about 40% of those in the low–risk group.

5. Conclusions

In summary, our study revealed several genes which appeared to be stably correlated
longitudinally with brain quantitative traits in the limbic region, basal ganglia region, and
cerebellum region. These genes can be used as potential drug targets for the treatment
of early–stage AD. Gene expression–determined cis–eQTL SNPs influence the expression
of their corresponding genes by affecting transcription factor binding or the activities of
promoters and enhancers. Quantitative traits and cis–eQTL SNPs in the limbic region can
effectively predict the conversion risk of MCI patients.
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lomeDB database, Table S4: Annotations of promoters of cis-eQTL SNPs, Table S5: Annotations of
super enhancers of cis-eQTL SNPs, Figure S1: Bar plots of associations between 26 SNPs in the basal
ganglia region and 6 subcortical structures, Figure S2: Bar plots of associations between 14 SNPs in
the cerebellum region and 6 subcortical structures.

Author Contributions: Conceptualization, S.-X.Y.; methodology, S.-X.Y.; validation, S.-X.Y., H.-T.L.
and X.S.; formal analysis, S.-X.Y. and X.S.; investigation, S.-X.Y.; writing—original draft preparation,
S.-X.Y. and X.S.; writing—review and editing, S.-X.Y., Y.G. and X.S.; visualization, S.-X.Y.; supervision,
X.S.; project administration, X.S.; funding acquisition, X.S. All authors have read and agreed to the
published version of the manuscript.

Funding: This research was sponsored by the National Natural Science Foundation of China (81830053,
61972084) and the Key Research and Development Program of Jiangsu province (BE2016002-3).

Institutional Review Board Statement: This study did not involve patients. The data collection
procedures were approved by the institutional review boards of all participating centers to the
Alzheimer’s Disease Neuroimaging Initiative.

Informed Consent Statement: Not applicable for this study. Participating centers to the Alzheimer’s
Disease Neuroimaging Initiative obtained written informed consent from all participants or their
authorized representatives for data collection.

Data Availability Statement: Data used in this study are available through the Alzheimer’s Disease
Neuroimaging Initiative (ADNI) database (http://adni.loni.usc.edu) (accessed on 25 November 2019).

Acknowledgments: Data used in the preparation of this paper were obtained from the Alzheimer’s
Disease Neuroimaging Initiative (ADNI) database (http://www.loni.ucla.edu/ADNI) (accessed
on 25 November 2019). As such, investigators within the ADNI contributed to the design and
implementation of ADNI and/or provided data but did not participate in the analysis or writing of
this report. A complete list of ADNI investigators is available at http://www.loni.ucla.edu/ADNI/
Collaboration/ADNI_Auth-orship_list.pdf.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Van Giau, V.; Bagyinszky, E.; An, S.S.A.; Kim, S. Clinical Genetic Strategies for Early Onset Neurodegenerative Diseases. Mol. Cell.

Toxicol. 2018, 14, 123–142. [CrossRef]
2. Haines, J.L. Alzheimer Disease: Perspectives from Epidemiology and Genetics. J. Law Med. Ethics 2018, 46, 694–698. [CrossRef]

[PubMed]
3. Hughes, T.F.; Snitz, B.E.; Ganguli, M. Should Mild Cognitive Impairment Be Subtyped? Curr. Opin. Psychiatry 2011, 24, 237–242.

[CrossRef] [PubMed]
4. Lambert, J.-C.; Ibrahim-Verbaas, C.A.; Harold, D.; Naj, A.C.; Sims, R.; Bellenguez, C.; Jun, G.; DeStefano, A.L.; Bis, J.C.; Beecham,

G.W.; et al. Meta-Analysis of 74,046 Individuals Identifies 11 New Susceptibility Loci for Alzheimer’s Disease. Nat. Genet. 2013,
45, 1452–1458. [CrossRef] [PubMed]

https://www.mdpi.com/article/10.3390/biomedicines9060658/s1
https://www.mdpi.com/article/10.3390/biomedicines9060658/s1
http://adni.loni.usc.edu
http://www.loni.ucla.edu/ADNI
http://www.loni.ucla.edu/ADNI/Collaboration/ADNI_Auth-orship_list.pdf
http://www.loni.ucla.edu/ADNI/Collaboration/ADNI_Auth-orship_list.pdf
http://doi.org/10.1007/s13273-018-0015-3
http://doi.org/10.1177/1073110518804230
http://www.ncbi.nlm.nih.gov/pubmed/30336113
http://doi.org/10.1097/YCO.0b013e328344696b
http://www.ncbi.nlm.nih.gov/pubmed/21346570
http://doi.org/10.1038/ng.2802
http://www.ncbi.nlm.nih.gov/pubmed/24162737


Biomedicines 2021, 9, 658 13 of 14

5. Jansen, I.E.; Savage, J.E.; Watanabe, K.; Bryois, J.; Williams, D.M.; Steinberg, S.; Sealock, J.; Karlsson, I.K.; Hägg, S.; Athanasiu, L.;
et al. Genome-Wide Meta-Analysis Identifies New Loci and Functional Pathways Influencing Alzheimer’s Disease Risk. Nat.
Genet. 2019, 51, 404–413. [CrossRef]

6. Schwartzentruber, J.; Cooper, S.; Liu, J.Z.; Barrio-Hernandez, I.; Bello, E.; Kumasaka, N.; Young, A.M.; Franklin, R.J.; Johnson, T.;
Estrada, K.; et al. Genome-Wide Meta-Analysis, Fine-Mapping and Integrative Prioritization Implicate New Alzheimer’s Disease
Risk Genes. Nat. Genet. 2021, 53, 392–402. [CrossRef] [PubMed]

7. Shen, L.; Kim, S.; Risacher, S.L.; Nho, K.; Swaminathan, S.; West, J.D.; Foroud, T.; Pankratz, N.; Moore, J.H.; Sloan, C.D.; et al.
Whole Genome Association Study of Brain-Wide Imaging Phenotypes for Identifying Quantitative Trait Loci in MCI and AD: A
Study of the ADNI Cohort. NeuroImage 2010, 53, 1051–1063. [CrossRef]

8. Albert, F.W.; Kruglyak, L. The Role of Regulatory Variation in Complex Traits and Disease. Nat. Rev. Genet. 2015, 16, 197–212.
[CrossRef]

9. Lappalainen, T.; Sammeth, M.; Friedländer, M.R.; AC‘t Hoen, P.; Monlong, J.; Rivas, M.A.; Gonzalez-Porta, M.; Kurbatova, N.;
Griebel, T.; Ferreira, P.G.; et al. Transcriptome and Genome Sequencing Uncovers Functional Variation in Humans. Nature 2013,
501, 506–511. [CrossRef]

10. Gusev, A.; Ko, A.; Shi, H.; Bhatia, G.; Chung, W.; Penninx, B.W.; Jansen, R.; De Geus, E.J.; Boomsma, D.I.; Wright, F.A.; et al.
Integrative Approaches for Large-Scale Transcriptome-Wide Association Studies. Nat. Genet. 2016, 48, 245–252. [CrossRef]
[PubMed]

11. Gamazon, E.R.; Wheeler, H.E.; Shah, K.P.; Mozaffari, S.V.; Aquino-Michaels, K.; Carroll, R.J.; Eyler, A.E.; Denny, J.C.; Nicolae, D.L.;
Cox, N.J.; et al. A Gene-Based Association Method for Mapping Traits Using Reference Transcriptome Data. Nat. Genet. 2015, 47,
1091–1098. [CrossRef] [PubMed]

12. Raj, T.; Li, Y.I.; Wong, G.; Humphrey, J.; Wang, M.; Ramdhani, S.; Wang, Y.-C.; Ng, B.; Gupta, I.; Haroutunian, V.; et al. Integrative
Transcriptome Analyses of the Aging Brain Implicate Altered Splicing in Alzheimer’s Disease Susceptibility. Nat. Genet. 2018, 50,
1584–1592. [CrossRef] [PubMed]

13. Hao, S.; Wang, R.; Zhang, Y.; Zhan, H. Prediction of Alzheimer’s Disease-Associated Genes by Integration of GWAS Summary
Data and Expression Data. Front. Genet. 2019, 9, 653. [CrossRef]

14. Jung, S.-H.; Nho, K.; Kim, D.; Won, H.-H.; Initiative, A.D.N. Genetic Risk Prediction of Late-Onset Alzheimer’s Disease Based on
Tissue-Specific Transcriptomic Analysis and Polygenic Risk Scores: Genetics/Genetic Factors of Alzheimer’s Disease. Alzheimer’s
Dement. 2020, 16, e045184. [CrossRef]

15. Gerring, Z.F.; Lupton, M.K.; Edey, D.; Gamazon, E.R.; Derks, E.M. An Analysis of Genetically Regulated Gene Expression across
Multiple Tissues Implicates Novel Gene Candidates in Alzheimer’s Disease. Alzheimer’s Res. Ther. 2020, 12, 1–10. [CrossRef]

16. GTEx Consortium. Genetic Effects on Gene Expression across Human Tissues. Nature 2017, 550, 204–213. [CrossRef] [PubMed]
17. Boyes, R.G.; Gunter, J.L.; Frost, C.; Janke, A.L.; Yeatman, T.; Hill, D.L.; Bernstein, M.A.; Thompson, P.M.; Weiner, M.W.; Schuff, N.;

et al. Intensity Non-Uniformity Correction Using N3 on 3-T Scanners with Multichannel Phased Array Coils. Neuroimage 2008,
39, 1752–1762. [CrossRef] [PubMed]

18. Purcell, S.; Neale, B.; Todd-Brown, K.; Thomas, L.; Ferreira, M.A.; Bender, D.; Maller, J.; Sklar, P.; de Bakker, P.I.; Daly, M.J.; et al.
PLINK: A Tool Set for Whole-Genome Association and Population-Based Linkage Analyses. Am. J. Hum. Genet. 2007, 81, 559–575.
[CrossRef] [PubMed]

19. Howie, B.N.; Donnelly, P.; Marchini, J. A Flexible and Accurate Genotype Imputation Method for the next Generation of
Genome-Wide Association Studies. PLoS Genet. 2009, 5, e1000529. [CrossRef] [PubMed]

20. Dayem Ullah, A.Z.; Lemoine, N.R.; Chelala, C. SNPnexus: A Web Server for Functional Annotation of Novel and Publicly Known
Genetic Variants (2012 Update). Nucleic Acids Res. 2012, 40, W65–W70. [CrossRef]

21. Ward, L.D.; Kellis, M. HaploReg: A Resource for Exploring Chromatin States, Conservation, and Regulatory Motif Alterations
within Sets of Genetically Linked Variants. Nucleic Acids Res. 2012, 40, D930–D934. [CrossRef]

22. Boyle, A.P.; Hong, E.L.; Hariharan, M.; Cheng, Y.; Schaub, M.A.; Kasowski, M.; Karczewski, K.J.; Park, J.; Hitz, B.C.; Weng, S.;
et al. Annotation of Functional Variation in Personal Genomes Using RegulomeDB. Genome Res. 2012, 22, 1790–1797. [CrossRef]

23. Pan, Q.; Liu, Y.-J.; Bai, X.-F.; Han, X.-L.; Jiang, Y.; Ai, B.; Shi, S.-S.; Wang, F.; Xu, M.-C.; Wang, Y.-Z.; et al. VARAdb: A
Comprehensive Variation Annotation Database for Human. Nucleic Acids Res. 2021, 49, D1431–D1444. [CrossRef]

24. Jiang, Y.; Qian, F.; Bai, X.; Liu, Y.; Wang, Q.; Ai, B.; Han, X.; Shi, S.; Zhang, J.; Li, X.; et al. SEdb: A Comprehensive Human
Super-Enhancer Database. Nucleic Acids Res. 2019, 47, D235–D243. [CrossRef]

25. Barnes, D.E.; Cenzer, I.S.; Yaffe, K.; Ritchie, C.S.; Lee, S.J.; Alzheimer’s Disease Neuroimaging Initiative. A Point-Based Tool to
Predict Conversion from Mild Cognitive Impairment to Probable Alzheimer’s Disease. Alzheimer’s Dement. 2014, 10, 646–655.
[CrossRef] [PubMed]

26. Liu, G.-M.; Zeng, H.-D.; Zhang, C.-Y.; Xu, J.-W. Identification of a Six-Gene Signature Predicting Overall Survival for Hepatocellu-
lar Carcinoma. Cancer Cell Int. 2019, 19, 1–13. [CrossRef] [PubMed]

27. Rosenberger, A.F.; Rozemuller, A.J.; van der Flier, W.M.; Scheltens, P.; van der Vies, S.M.; Hoozemans, J.J. Altered Distribution of
the EphA4 Kinase in Hippocampal Brain Tissue of Patients with Alzheimer’s Disease Correlates with Pathology. Acta Neuropathol.
Commun. 2014, 2, 1–13. [CrossRef]

28. Tamura, K.; Chiu, Y.-W.; Shiohara, A.; Hori, Y.; Tomita, T. EphA4 Regulates Aβ Production via BACE1 Expression in Neurons.
FASEB J. 2020, 34, 16383–16396. [CrossRef]

http://doi.org/10.1038/s41588-018-0311-9
http://doi.org/10.1038/s41588-020-00776-w
http://www.ncbi.nlm.nih.gov/pubmed/33589840
http://doi.org/10.1016/j.neuroimage.2010.01.042
http://doi.org/10.1038/nrg3891
http://doi.org/10.1038/nature12531
http://doi.org/10.1038/ng.3506
http://www.ncbi.nlm.nih.gov/pubmed/26854917
http://doi.org/10.1038/ng.3367
http://www.ncbi.nlm.nih.gov/pubmed/26258848
http://doi.org/10.1038/s41588-018-0238-1
http://www.ncbi.nlm.nih.gov/pubmed/30297968
http://doi.org/10.3389/fgene.2018.00653
http://doi.org/10.1002/alz.045184
http://doi.org/10.1186/s13195-020-00611-8
http://doi.org/10.1038/nature24277
http://www.ncbi.nlm.nih.gov/pubmed/29022597
http://doi.org/10.1016/j.neuroimage.2007.10.026
http://www.ncbi.nlm.nih.gov/pubmed/18063391
http://doi.org/10.1086/519795
http://www.ncbi.nlm.nih.gov/pubmed/17701901
http://doi.org/10.1371/journal.pgen.1000529
http://www.ncbi.nlm.nih.gov/pubmed/19543373
http://doi.org/10.1093/nar/gks364
http://doi.org/10.1093/nar/gkr917
http://doi.org/10.1101/gr.137323.112
http://doi.org/10.1093/nar/gkaa922
http://doi.org/10.1093/nar/gky1025
http://doi.org/10.1016/j.jalz.2013.12.014
http://www.ncbi.nlm.nih.gov/pubmed/24495339
http://doi.org/10.1186/s12935-019-0858-2
http://www.ncbi.nlm.nih.gov/pubmed/31139015
http://doi.org/10.1186/s40478-014-0079-9
http://doi.org/10.1096/fj.202001510R


Biomedicines 2021, 9, 658 14 of 14

29. Gavin, C.F.; Rubio, M.D.; Young, E.; Miller, C.; Rumbaugh, G. Myosin II Motor Activity in the Lateral Amygdala Is Required for
Fear Memory Consolidation. Learn. Mem. 2012, 19, 9–14. [CrossRef] [PubMed]

30. Lamprecht, R.; Margulies, D.; Farb, C.; Hou, M.; Johnson, L.; LeDoux, J. Myosin Light Chain Kinase Regulates Synaptic Plasticity
and Fear Learning in the Lateral Amygdala. Neuroscience 2006, 139, 821–829. [CrossRef]

31. Kneussel, M.; Wagner, W. Myosin Motors at Neuronal Synapses: Drivers of Membrane Transport and Actin Dynamics. Nat. Rev.
Neurosci. 2013, 14, 233–247. [CrossRef]

32. Ishii, M.; Iadecola, C. Risk Factor for Alzheimer’s Disease Breaks the Blood–Brain Barrier; Nature Publishing Group: Berlin, Germany, 2020.
33. Gill, G. Regulation of the Initiation of Eukaryotic Transcription. Essays Biochem. 2001, 37, 33–44. [PubMed]
34. Khurana, E.; Fu, Y.; Chakravarty, D.; Demichelis, F.; Rubin, M.A.; Gerstein, M. Role of Non-Coding Sequence Variants in Cancer.

Nat. Rev. Genet. 2016, 17, 93–108. [CrossRef]
35. Kikuchi, M.; Hara, N.; Hasegawa, M.; Miyashita, A.; Kuwano, R.; Ikeuchi, T.; Nakaya, A. Enhancer Variants Associated with

Alzheimer’s Disease Affect Gene Expression via Chromatin Looping. BMC Med. Genom. 2019, 12, 128. [CrossRef] [PubMed]
36. Choi, K.Y.; Lee, J.J.; Gunasekaran, T.I.; Kang, S.; Lee, W.; Jeong, J.; Lim, H.J.; Zhang, X.; Zhu, C.; Won, S.-Y.; et al. APOE Promoter

Polymorphism-219T/G Is an Effect Modifier of the Influence of APOE E4 on Alzheimer’s Disease Risk in a Multiracial Sample.
J. Clin. Med. 2019, 8, 1236. [CrossRef] [PubMed]

37. Fu, A.K.; Hung, K.-W.; Huang, H.; Gu, S.; Shen, Y.; Cheng, E.Y.; Ip, F.C.; Huang, X.; Fu, W.-Y.; Ip, N.Y. Blockade of EphA4
Signaling Ameliorates Hippocampal Synaptic Dysfunctions in Mouse Models of Alzheimer’s Disease. Proc. Natl. Acad. Sci. USA
2014, 111, 9959–9964. [CrossRef] [PubMed]

38. Vargas, L.; Cerpa, W.; Muñoz, F.; Zanlungo, S.; Alvarez, A. Amyloid-β Oligomers Synaptotoxicity: The Emerging Role of
EphA4/c-Abl Signaling in Alzheimer’s Disease. Biochim. Biophys. Acta Mol. Basis Dis. 2018, 1864, 1148–1159. [CrossRef]

39. Blair, L.J.; Sabbagh, J.J.; Dickey, C.A. Targeting Hsp90 and Its Co-Chaperones to Treat Alzheimer’s Disease. Expert Opin. Ther.
Targets 2014, 18, 1219–1232. [CrossRef]

40. Rudolf, R.; Bittins, C.M.; Gerdes, H.-H. The Role of Myosin V in Exocytosis and Synaptic Plasticity. J. Neurochem. 2011, 116,
177–191. [CrossRef]

41. Matteoli, M.; Coco, S.; Schenk, U.; Verderio, C. Vesicle Turnover in Developing Neurons: How to Build a Presynaptic Terminal.
Trends Cell Biol. 2004, 14, 133–140. [CrossRef]

42. Lu, B.; Nagappan, G.; Guan, X.; Nathan, P.J.; Wren, P. BDNF-Based Synaptic Repair as a Disease-Modifying Strategy for
Neurodegenerative Diseases. Nat. Rev. Neurosci. 2013, 14, 401–416. [CrossRef]

43. Butterfield, D.A.; Halliwell, B. Oxidative Stress, Dysfunctional Glucose Metabolism and Alzheimer Disease. Nat. Rev. Neurosci.
2019, 20, 148–160. [CrossRef]

44. Rottkamp, C.A.; Nunomura, A.; Raina, A.K.; Sayre, L.M.; Perry, G.; Smith, M.A. Oxidative Stress, Antioxidants, and Alzheimer
Disease. Alzheimer Dis. Assoc. Disord. 2000, 14, S62–S66. [CrossRef]

45. Parkinson, M.H.; Schulz, J.B.; Giunti, P. Co-Enzyme Q10 and Idebenone Use in Friedreich’s Ataxia. J. Neurochem. 2013, 126,
125–141. [CrossRef]

46. Qian, L.; Liu, R.; Qin, R.; Zhao, H.; Xu, Y. The Associated Volumes of Sub-Cortical Structures and Cognitive Domain in Patients of
Mild Cognitive Impairment. J. Clin. Neurosci. 2018, 56, 56–62. [CrossRef] [PubMed]

47. Xu, L.; Wu, X.; Li, R.; Chen, K.; Long, Z.; Zhang, J.; Guo, X.; Yao, L. Prediction of Progressive Mild Cognitive Impairment by
Multi-Modal Neuroimaging Biomarkers. J. Alzheimer’s Dis. 2016, 51, 1045–1056. [CrossRef] [PubMed]

48. Yi, H.-A.; Möller, C.; Dieleman, N.; Bouwman, F.H.; Barkhof, F.; Scheltens, P.; van der Flier, W.M.; Vrenken, H. Relation between
Subcortical Grey Matter Atrophy and Conversion from Mild Cognitive Impairment to Alzheimer’s Disease. J. Neurol. Neurosurg.
Psychiatry 2016, 87, 425–432. [CrossRef] [PubMed]

http://doi.org/10.1101/lm.024042.111
http://www.ncbi.nlm.nih.gov/pubmed/22174310
http://doi.org/10.1016/j.neuroscience.2005.12.055
http://doi.org/10.1038/nrn3445
http://www.ncbi.nlm.nih.gov/pubmed/11758455
http://doi.org/10.1038/nrg.2015.17
http://doi.org/10.1186/s12920-019-0574-8
http://www.ncbi.nlm.nih.gov/pubmed/31500627
http://doi.org/10.3390/jcm8081236
http://www.ncbi.nlm.nih.gov/pubmed/31426376
http://doi.org/10.1073/pnas.1405803111
http://www.ncbi.nlm.nih.gov/pubmed/24958880
http://doi.org/10.1016/j.bbadis.2018.01.023
http://doi.org/10.1517/14728222.2014.943185
http://doi.org/10.1111/j.1471-4159.2010.07110.x
http://doi.org/10.1016/j.tcb.2004.01.007
http://doi.org/10.1038/nrn3505
http://doi.org/10.1038/s41583-019-0132-6
http://doi.org/10.1097/00002093-200000001-00010
http://doi.org/10.1111/jnc.12322
http://doi.org/10.1016/j.jocn.2018.07.010
http://www.ncbi.nlm.nih.gov/pubmed/30029954
http://doi.org/10.3233/JAD-151010
http://www.ncbi.nlm.nih.gov/pubmed/26923024
http://doi.org/10.1136/jnnp-2014-309105
http://www.ncbi.nlm.nih.gov/pubmed/25904810

	Introduction 
	Materials and Methods 
	Ethics Statement 
	Samples 
	Genotype and Image Data Pre–Processing 
	Correspondences among GTEx Models, Anatomical Regions, and Freesurfer–Defined Structures 
	Correlation between Predictive Gene Expression and Quantitative Traits 
	Conversion Analysis Based on Quantitative Traits and SNPs 

	Results 
	Sample Characteristics 
	Identification of Quantitative Traits–Related Genes 
	Fine-Mapping Analyses of Gene Expression-Determined Cis-eQTL SNPs 
	Conversion Analysis Based on Quantitative Traits and SNPs 

	Discussion 
	Conclusions 
	References

